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This year we did not use ClueWeb12 or ClueWeb12-B,while we solve this issue based on data we 
crawled from openweb.Firstly, we use external structured resource –Google Place API[1] to find all of 
the possible candidate places in the distance of 5 hours' drive. Secondly, we use Yandex[2] to find a 
description of each place because we get URL of the corresponding place. Then, we classifythe 
descriptions of all places. Finally, we ranked the pages based on users’ preferences. 

1 Data Preparation 
Google Place API is used to generate candidate places for each query. We get pages from Google 

Place API and get descriptionsof them from Yandex. It is a challengeto get enough candidate places due 
to the visiting limitation of API. Another challenge is that Google Place API does not return enough 
candidate places for every specific geographical position. So the places we got from the API of current 
round are used as seeds to get more nearby places in the next round. After several rounds, we remove 
the duplicate places and get the candidate set. 

2 Query Generation 
Queries are the basics of our scheme. We want to build good queries for the search engine to 

return us with good suggestions.Each query consists of base part and keyword part.The base part is 
geographical information providing the longitude and latitude. In the base part we use Google Places to 
generate basic candidates. Then with the help of Yandex we can almost get the brief description of each 
item. By runningprocedure “lda” we generate a query vector based on LDA model. Each candidate 
description will generate a topic vector. By runningprocedure “cat”, the query is generated by mapping 
every example into a vector of 10 topics, which is done manually. Then for each user an average vector 
of all the examples rated 5 or 4 is generated. 
3 SchemeI 

Procedure(RUN) “cat” consists of two steps. The first step is generating users topic vectors 
manually. At first we map each example to a 10-dimension vector, then a user’s profile vector is 
defined as: 

푃 =
∑ 푣 ,

푛 (1 ≤ 푗 ≤ 10) 

푃 is the j-th dimension of user’s profile vector. n is the number of examples rated 4 or 5 by the user.  
In this method we chose a ten dimension feature vector to represent a place. Every dimension is a 

type information that we think it’s important when we do suggestions. Then we got type information 
for every candidate place from Google Place API. But these type tags from API are a little different 
from our dimensions of feature vector. So we convert these class tags into our feature vector by define 
the weight that map the class tag to every dimension of feature vector. We calculate each dimension of 
a candidate place by the following equation: 

퐼 =
∑ 푣 ,

푚 (1 ≤ 푗 ≤ 10) 
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퐼 is the j-th dimension of the item’s profile vector. m is the number of sub class which is labeled on the 
item.Then with the user’s profile vector and the item’s topic vector, we can compute a score of how 
much does an user like a candidate item: 

푆푐표푟푒 , = 푃 ∙ 퐼  

푆푐표푟푒 ,  is the score of how u(user) like item(item). 푃 is the i’th dimension of user’s profile 
vector P, 퐼  is the i’th dimension of item vector. 

For a user, we compute all the score of candidates, then we recommend the top K items to the 
user. 

4 SchemeII 
Procedure(RUN) “lda” applies Topic Model to users’ interests and types of places. We use 

descriptions of places as the input of LDA. It means that we regard each description of a place as a 
document. We want to find the latent type distribution of places. Sowe use LDA to find latent sematic 
vector for every place to represent its text descriptions. In some degree, it looks like to reduce the 
dimensions of the original places’ description. 
After running LDA model[3], we get a vector for every place. For each query, we know the users’ 
visited places and the candidate set. We notate the user’s visited place set as V. We use 푟푎푡푒(푢, 푝) to 
represent the rate given by user u to place p.Then we calculate the score of the i-th candidate place for 
user u in the following equation: 

푆푐표푟푒(푢, 푝, 푖) = rate(u, p) ∗ cosine(vector(p), vector(i))
∈

 

In the formulation above, we use cosine distance to represent the similarity of two vectors. Thus we get 
the scores of candidate places. Then we sort these places by their scores in descending order and 
recommend the top 50 places to user when he is in the corresponding geographical position. 

5 Summary 
In our schemes, we firstly used Google Place API to generate candidate set for each specified 

longitude and latitude. Then we tried human annotation or Latent Topic Model to find the feature 
vector of each place which represents its type information. Our idea is based on the fact that the user 
would like to visit the places with the same type that he had ever visited. For instance, if you had 
visited parks for several times, then you will have much more chance to visit parks in your nearby 
places. So in both Scheme I and Scheme II, we try to use human annotations or Latent Topical Model 
to find type information of places and users’ interests. 

After analyzing the results of our model, we found that there were some points we need to be 
improve. First we should get more candidate places for each specific geographical location. It means 
that we should make our candidate set much bigger. Because of the access limitation of Google Place 
API, we didn’t fetchenough candidate places nearby the specified position. Second we should model 
the type of places in a finer grained way. More parameters should be trained and tested for LDA model. 
Thus we can get much accurate latent semantic type for each place. Then the representation of place 
will be much more useful. The same improvement can also be made in SchemeI. 

To summarize, we did context suggestion by modeling interests of user and types of places. So the 
more accurate the type of every place is, the better suggestions will be made. 
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